

COM Wrapper

Tutorial on COM Servers for Custom Objects

by Chandar Kumar Oddiraju

Version 2.0 - August 2009, Marat Mirgaleev

Autodesk Developer Services

 2

Table of Contents

INTRODUCTION 3

1 CREATING THE CUSTOM OBJECT MODULE (DBX) 3

1.1 CREATE A CUSTOM OBJECT PROJECT 3

1.2 ADDING CUSTOM OBJECT 4

1.3 DEFINE CUSTOM OBJECT ATTRIBUTES 6

1.4 FUNCTIONS YOU OVERRIDE 7

1.5 IMPLEMENTATION OF SUBGETCLASSID() IN CUSTOM OBJECT 8

1.6 BUILD ASDKRINGS.DBX 8

2 CREATING THE WRAPPER CLASS FOR THE CUSTOM OBJECT 9

2.1 CREATE A PROJECT 9

2.2 OBJECTARX WIZARD CREATED SOURCE CODE 9

2.3 ADDING A NEW CUSTOM OBJECT WRAPPER 11

2.4 IMPLEMENTATION OF SUBGETCLASSID() IN CUSTOM OBJECT REVISITED 13

2.5 ADDING NEW PROPERTIES 14

2.6 OBJECTARX APPWIZARD GENERATED FUNCTIONS 15

2.7 MODIFICATIONS YOU NEED TO DO 16

2.8 FINAL CODE OF PUT- AND GET-METHODS 18

2.9 ADDITIONAL PROJECT SETTINGS FOR THE WRAPPER MODULE 20

2.10 BUILD AND LOAD THE COM WRAPPER MODULE 21

3 TESTING THE COM WRAPPER 21

4 ADDING OPM FEATURE 23

4.1 DEVELOPMENT OF OPM PROPERTIES 23

4.2 MODIFY THE OPM OVERRIDE FUNCTIONS 25

 3

Introduction

In this tutorial you will see how to make your ObjectARX custom objects available to COM. Doing so brings two

primary benefits:

 You can leverage the ease of use of languages such as Visual Basic, Visual Basic for Applications, Java and

Delphi to manipulate your custom objects.

 The Properties window of AutoCAD will be able to interact with your object intelligently.

Creating a COM wrapper for your custom object requires a reasonable amount of work. Autodesk provides two

tools to make this task easier: an ATL-based framework that implements most of the interfaces that you need on a

COM wrapper and the ObjectARX Wizards that let you configure this framework through easy to use dialogs. For

more information on the ATL based framework, see the "Using COM for ObjectARX Development" chapter in

the ObjectARX Developer Guide or consult the online documentation.

To create a COM wrapper you need to have an ObjectARX custom object. In the first part of the tutorial, we will

build a simple custom object then in the second half of the tutorial we will create a COM wrapper for our custom

object.

1 Creating the custom object module (DBX)

Let's create a project that defines a custom entity. We will use the ObjectARX Application Wizard to create this

project. Make sure that you have downloaded the latest version of the ObjectARX Wizard from the ADN web

site.

1.1 Create a custom object project

On the File menu, click New then Project.

Select ObjectARX and ObjectARX/DBX/OMF Project.

 4

Type "MyRings" in the Name box.

Select the project location.

Type "Labs" in the Solution Name box.

Click OK.

ObjectARX/DBX/OMF Application Wizard will start (see the picture below).

Here you can enter your Registered Developer Symbol, but we will use Asdk symbol in this tutorial.

(To register you own developer symbol please go to the ADN website.)

Click Next.

Choose ObjectDBX (Custom Object Enabler).

Click Finish.

1.2 Adding Custom object

Let's define a custom entity and add it to our project.

Select Project – Add Class from the main menu. Click ObjectARX and Custom Object Wizard.

 5

In Name enter "Rings". Then click Add.

You will be presented with the ObjectDBX Custom Object Class Wizard dialog.

Enter "AsdkRings" in Class name.

 6

Select AcDbCurve in the Base class dropdown list.

Click Finish.

1.3 Define Custom Object Attributes

Next, we will add some Attributes to our Custom Object. Click the Autodesk Class Explorer icon in the

ObjectARX AddIn toolbar:

then right-click AsdkRings in the Autodesk Class Explorer:

and click the Add Variable item.

In the Add Member Variable Wizard, select protected in Access.

 7

From the Variable type select AcGePoint3d.

Enter "m_center" in the Variable name.

Uncheck Increase Version number.

Check Implement Get/Put Methods.

Press Finish.

Similarly, create all the remaining variables from the table:

Name Type

m_center AcGePoint3d

m_normal AcGeVector3d

m_radius double

m_rings Adesk::UInt8

You can check the put- end get-methods in the AsdkRings.h and .cpp files, for example:

double AsdkRings::get_m_radius(void) const

{

 assertReadEnabled () ;

 return (m_radius) ;

}

I prefer to rename it to get_radius and all other methods similarly.

Try to build the project. On my computer it gives a compile error: 'NaN' : undeclared identifier.

Just replace NaN with 0, it should be Ok. Also don't forget to specify the ObjectARX include and library paths in

the project settings. So, it builds now, let's go ahead.

1.4 Functions you override

As our AsdkRings class derives from AcDbCurve, we may need to override some methods of the base class.

These methods include subGetClassID(), subWorldDraw() and a few others.

The Wizard also adds some other overridden methods to the class definition.

We are going to change the graphic representation of our custom entity. To do this we will modify the

subWorldDraw() function created by the Wizard, as shown below, in order to draw a series of circles with the

same center:

Adesk::Boolean AsdkRings::subWorldDraw (AcGiWorldDraw *mode)

{

 assertReadEnabled();

 double step = m_radius / m_rings; // Calculate the increment for each ring

 double radius = step; // Initialize the first radius

 // Draw a circle for each radius

 for(int i = 0; i < m_rings ; i++, radius += step)

 mode->geometry().circle(m_center, radius, m_normal);

 return true;

}

Copy the code above and paste it instead of the existing subWorldDraw().

 8

1.5 Implementation of subGetClassID() in Custom Object

The important function that has to be overridden by the custom object is subGetClassID(). This function is

used by AutoCAD whenever AutoCAD needs to retrieve the COM wrapper for a custom object given a pointer or

id of the custom object. This happens, for example, when the user selects the custom object while the AutoCAD

Properties window is active.

To override the subGetClassID() method:

Expand the AsdkRings branch in the Autodesk Class Explorer, then expand Base classes, then

AcDbCurve –> Base classes –> AcDbEntity (see the picture below).

Find Acad::ErrorStatus subGetClassID(CLSID *) const in the list and right-click it:

Click Implement Base Class Method in the menu.

The subGetClassID() method will be added to the AsdkRings.h and .cpp files.

To implement this function correctly we need the CLSID of our COM wrapper, something that we do not have at

this point. We will come back to this function in Section 0.

1.6 Build AsdkRings.dbx

Now we are ready to build the project. After a successful build, copy the AsdkMyRings.dbx file into

"C:\Program Files\Common Files\Autodesk Shared\" directory. If you want, you can use a

different directory, however you are advised to put the directory in System Path. Otherwise, you are required to

load the .DBX file manually into AutoCAD. Our COM server implementing the COM wrapper will have a load-

time dependency on our custom object. The operating system must be able to resolve this dependency at load time

and the best way to make sure that it is possible is to put our DBX on the operating system path. For more

information on how the OS resolves DLL dependencies, see DLL topics on MSDN.

 9

2 Creating the wrapper class for the custom object

Now we will provide COM support for our Rings Object.

2.1 Create a project

Select File -> New -> Project from the main menu.

In the New Project dialog box select ObjectARX and ObjectARX/DBX/OMF Project.

Enter "RingsWrapper" for the Name.

Make sure that you have selected Add to Solution from the Solution drop-down list.

Click the OK button.

The next dialog you are presented with is the ObjectARX Wizard. First, you have to enter your registered

developer symbol as before. Use Asdk for this sample.

Press Next four times (leaving the default settings on those tabs of the Wizard).

Check the Implement a COM Server using ATL radio button. This will activate the Use ObjectARX

ATL Extensions for Custom Objects check box, make sure it is checked.

Select the Finish button.

2.2 ObjectARX Wizard created source code

Now we have a project that contains the skeleton for an ObjectARX application which uses ATL. The project

contains a number of files.

 10

Open the RingsWrapper.cpp file. You can see that it implements the necessary functions needed for ObjectARX,

COM and ATL:

//---

//- RingsWrapper.cpp : Initialization functions

//---

#include "StdAfx.h"

#include "resource.h"

#include <initguid.h>

#include "RingsWrapper.h"

#include "RingsWrapper_i.c"

#include "acadi_i.c"

//---

class CRingsWrapperModule : public CAtlDllModuleT<CRingsWrapperModule> {

public :

 DECLARE_LIBID(LIBID_AsdkRingsWrapperLib)

 DECLARE_REGISTRY_APPID_RESOURCEID(IDR_RINGSWRAPPER,

"{5C6BB8CF-D672-4CF0-9393-6704D074E47E}")

} ;

CRingsWrapperModule _AtlModule ;

//---

//- DLL Entry Point

extern "C"

BOOL WINAPI DllMain (HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved) {

 //- Remove this if you use lpReserved

 UNREFERENCED_PARAMETER(lpReserved) ;

 if (dwReason == DLL_PROCESS_ATTACH) {

 _hdllInstance =hInstance ;

 } else if (dwReason == DLL_PROCESS_DETACH) {

 }

 return (_AtlModule.DllMain (dwReason, lpReserved)) ;

}

//---

//- Used to determine whether the DLL can be unloaded by OLE

STDAPI DllCanUnloadNow (void) {

 HRESULT hr =(_AtlModule.GetLockCount () == 0 ? S_OK : S_FALSE) ;

 return (hr) ;

}

//---

//- Returns a class factory to create an object of the requested type

STDAPI DllGetClassObject (REFCLSID rclsid, REFIID riid, LPVOID *ppv) {

 return (_AtlModule.GetClassObject (rclsid, riid, ppv)) ;

}

//---

//- DllRegisterServer - Adds entries to the system registry

STDAPI DllRegisterServer (void) {

 //- Registers object, typelib and all interfaces in typelib

 return (_AtlModule.RegisterServer (TRUE)) ;

}

//---

//- DllUnregisterServer - Removes entries from the system registry

STDAPI DllUnregisterServer (void) {

 return (_AtlModule.UnregisterServer (TRUE)) ;

}

//---

#ifndef _WIN64

#pragma comment(linker, "/EXPORT:DllCanUnloadNow=_DllCanUnloadNow@0,PRIVATE")

#pragma comment(linker, "/EXPORT:DllGetClassObject=_DllGetClassObject@12,PRIVATE")

#pragma comment(linker, "/EXPORT:DllRegisterServer=_DllRegisterServer@0,PRIVATE")

#pragma comment(linker, "/EXPORT:DllUnregisterServer=_DllUnregisterServer@0,PRIVATE")

 11

#else

#pragma comment(linker, "/EXPORT:DllCanUnloadNow=DllCanUnloadNow,PRIVATE")

#pragma comment(linker, "/EXPORT:DllGetClassObject=DllGetClassObject,PRIVATE")

#pragma comment(linker, "/EXPORT:DllRegisterServer=DllRegisterServer,PRIVATE")

#pragma comment(linker, "/EXPORT:DllUnregisterServer=DllUnregisterServer,PRIVATE")

#endif

This file defines an instance of the CRingsWrapperModule class as well as the DllMain() function which

initializes and terminates the instance.

Windows calls the DllCanUnloadNow() function to test if it can unload your application, and

DllGetClassObject() to create an instance of one of the COM objects your application defines.

The DllRegisterServer() function registers our COM server application in the Windows registry, and the

DllUnregisterServer() function removes the entries from the Windows registry if the application should

be removed.

Also we have a standard ObjectARX application class in the acrxEntryPoint.cpp file which is called by AutoCAD

when our application is loaded.

There is one point that must be clear at this time. Although the DLL we have created is a COM server, it can only

be loaded into the AutoCAD process. This is because the DLL is an ObjectARX application that has a load-time

dependency on acad.exe. We provide an IMPLEMENT_ARX_ENTRYPOINT macro, which creates an

acrxEntryPoint() function, in this DLL, so that the user can load it on the AutoCAD command line using

the ARX command. In the RegisterServerComponents()virtual method the DLL calls

DllRegisterServer() thus registering itself in the registry. Note that once the DLL is registered, COM will

be able to load this DLL via its own activation mechanism. It is important to understand that when COM loads the

DLL, the acrxEntryPoint() function is NOT called. Therefore, it is advisable to do only self-registration

when acrxEntryPoint() is called and all other necessary initialization is done in DllMain().

Since this ARX is not the usual ObjectARX application, it is recommended NOT to register any commands in it.

You can build this project now. To do this:

Go to the main menu -> Build -> Configuration Manager and set the checkbox in the Build column for the

RingsWrapper project.

Then, the main menu -> Build -> Build Solution.

On my computer I get the following error:

.\RingsWrapper.rc(102) : error RC2135 : file not found: AsdkRingsWrapper.tlb

I simply double-click on the error message, that brings me to the RingsWrapper.rc file and to the following line:

1 TYPELIB "AsdkRingsWrapper.tlb"

I replace it with

1 TYPELIB "x64/Debug/AsdkRingsWrapper.tlb"

(your path may differ) and everything builds successfully.

Load the created .ARX file in AutoCAD, but currently it does nothing.

2.3 Adding a new Custom object wrapper

In the Solution Explorer, right-click the RingsWrapper project and select Add, then Class.

In the Add Class dialog choose ObjectARX and COM Wrapper Wizard.

 12

Enter "Rings" for the Name and press Add.

Answer "Yes" in the following message box:

You will see the AutoCAD COM Wrapper Object dialog. Here you can define the new COM object. In the Short

Name field enter "Rings". The Wizard fills the other fields automatically:

Click Next.

Type "AsdkRings" in DBX classname. This is the name of the custom entity we defined in our DBX

module.

 13

Check the Entity interface support (versus just Object) checkbox.

We also want to support the Property Inspector API (also known as the Object Property Manager, OPM), thus,

check Use IOPMPropertyExtensionImpl and Implement IOPMPropertyExpander in the OPM

support section. We will discuss this functionality in Section 4.

Click Finish.

The Wizard generates Rings.cpp and Rings.h files, which have the CRing class implementation and definition

respectively. Read on for further discussion of the contents of these files.

Since we are wrapping around the AsdkRings custom object, it would be a good idea to check whether the custom

object module is loaded or not, but we omit this in our sample.

Note that the COM server DLL has a load-time dependency on the DBX application implementing the custom

object so the Operating System tries to load the DBX module into memory when the COM server DLL is loaded.

2.4 Implementation of subGetClassID() in Custom Object Revisited

Now we have everything we need to properly implement the subGetClassID() function for AsdkRings that

we stubbed out in Section 1.5.

Modify the implementation in AsdkRings.cpp as follows:

Acad::ErrorStatus AsdkRings::subGetClassID(CLSID* pClsid) const

{

 assertReadEnabled();

 *pClsid = CLSID_Rings;

 return Acad::eOk;

}

 14

The CLSID_Rings is defined in RingsWrapper_i.c file. This file is generated from the RingsWrapper.idl file

when you build the RingsWrapper project. Add the following line to the AsdkRings.cpp after others #include's:

#include "../RingsWrapper/RingsWrapper_i.c"

And vice versa, in the RingsWrapper project, Rings.cpp file, we need to refer to another project:

#include "../MyRings/AsdkRings.h"

2.5 Adding new properties

Go to the Class View in the Solution Explorer and expand the RingsWrapper project, then expand the

AsdkRingsWrapperLib branch and right-click on the IRings interface to get the popup context menu (see

the picture). Select Add -> Add Property.

You will be presented with the Add Property Wizard.

 15

Enter "rings" in the Property Name field, type short in the Property type combo box. Ensure Get

Function and Put functions are checked. Also select PropPut radio button (these are the defaults).

Click Finish to add this property to the Rings object.

Repeat the same process for adding the remaining properties from the table:

Property Type Property Name

short rings

VARIANT center

double radius

VARIANT normal

2.6 ObjectARX AppWizard generated functions

First let us look into the RingsWrapper.idl file. You will see the following in the IRings interface section:

interface IRings : IAcadEntity

{

 [propget, id(1), helpstring("property rings")] HRESULT rings([out, retval] short *pVal);

 [propput, id(1), helpstring("property rings")] HRESULT rings([in] short newVal);

 [propget, id(2), helpstring("property center")] HRESULT center([out, retval] VARIANT *pVal);

 [propput, id(2), helpstring("property center")] HRESULT center([in] VARIANT newVal);

 [propget, id(3), helpstring("property radius")] HRESULT radius([out, retval] double *pVal);

 [propput, id(3), helpstring("property radius")] HRESULT radius([in] double newVal);

 [propget, id(4), helpstring("property normal")] HRESULT normal([out, retval] VARIANT *pVal);

 [propput, id(4), helpstring("property normal")] HRESULT normal([in] VARIANT newVal);

};

 16

Here every property is assigned with a unique id value, also each property is assigned with two distinct functions,

one of them is 'propput' for setting the value and other is 'propget' for retrieving the value. AppWizard

will generate functions based on these function types. For 'propput' you will have a put_XXX() function

and for 'propget' you will have a get_XXX() function, where XXX is the property name. You can change

the helpstring according to your requirements.

Now look at the Rings.cpp and Rings.h files that have the actual implementation of our Custom Object wrapper

class.

In the Rings.h file we see that the CRings class is multiple inherited from CComObjectRootEx,

CComCoClass, ISupportErrorInfo and IAcadEntityDispatchImpl. Also it is inherited from

IOPMPropertyExtensionImpl and IOPMPropertyExpander.

CComObjectRootEx and CComCoClass are provided by ATL. Please see the ATL documentation for details.

ISupportErrorInfo is a standard COM interface that has only one method:

InterfaceSupportsErrorInfo(), which is implemented in Rings.cpp.

IAcadEntityDispatchImpl represents the ATL-based framework provided on the ObjectARX SDK. It

implements a number of interfaces that are required from a COM wrapper. This class is a template class, thus the

full source code of this class is available to you on the ObjectARX SDK (see axboiler.h).

Now look at the CreateNewObject() function in Ring.cpp. In this function you create the custom object and

append it to its owner in the database. The owner is passed to you as a parameter of this function.

Note that the framework calls this function in response to a call to the

IAcadBaseObject::SetObjectId() method.

2.7 Modifications you need to do

All the modifications you do manually are in the Rings.cpp file.

In case of a single-threaded server like AutoCAD, all Automation calls go through the message loop and are

dispatched to a hidden window that calls the method. Since we are driven off the message loop and we are in the

application context, we need to explicitly lock the document before doing any operation on its database. We do

this by instantiating an AcAxDocLock object and passing our objectId to it. For details on the AcAxDocLock

class see the ObjectARX online help.

 AcAxDocLock lock(m_objId);

You also need to check the lock status, if you don’t succeed in locking the document, you are not allowed to do

modifications, you must simply return from function.

 if(lock.lockStatus()) // if something wrong return from here..

 return E_ACCESSDENIED;

The next step is to access the custom object that this COM object wraps. The framework stores the object ID of

the underlying database object in the m_objId member variable. You can use this member variable anytime to

gain access to the custom object. The best way is to use a ‘smart pointer’ to open the object:

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

In your get methods you open the object for read while in your set methods you open the object for write. Then

make sure that open operation succeeds:

 If(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 17

Now, you can delegate to the database object to actually set or get the property.

In get_xxxx(type *pVal) functions you call the object method to retrieve the required property and set into

the pVal argument.

In put_xxx(type newVal) functions you call the object method to set the required property to a value given

in the newVal argument.

This task is simple as long as you are dealing with basic types. However, points and vectors are passed as

VARIANTs on the COM interface, so, you will need to convert VARIANTs to AcGePoint3d or to

AcGeVector3d and vice versa. To deal with AcGePoint3d you use the AcAxPoint3d class, which is

specially designed for this purpose. AcAxPoint3d is wrapped around the AcGePoint3d class to implement

the COM-specific functionality. See ObjectARX online help for further details.

To convert from VARIANT to AcGePoint3d you do as follows:

STDMETHODIMP CRings::put_center(VARIANT newVal)

{

 . . .

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForWrite);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 AcAxPoint3d pt(newVal);

 pC->put_center(pt);

 . . .

}

Since AcAxPoint3d is derived from AcGePoint3d, you can safely pass this object in place of

AcGePoint3d object as an argument.

For converting from AcGePoint3d to VARIANT, you call the setVariant() method defined in

AcAxPoint3d.

STDMETHODIMP CRings::get_center(VARIANT *pVal)

{

 . . .

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 AcAxPoint3d pt;

 pC->center(pt);

 pt.setVariant(*pVal);

 . . .

}

Since the AcAxPoint3d constructor, which takes VARIANT type as argument, throws an exception, you must

handle it. This is achieved by wrapping the above two statements with a try-catch block.

 18

2.8 Final code of put- and get-methods

Please, copy and paste the following code.

To Rings.h:

public:

 //IRings

 STDMETHODIMP get_rings(short *pVal);

 STDMETHODIMP put_rings(short newVal);

 STDMETHODIMP get_center(VARIANT *pVal);

 STDMETHODIMP put_center(VARIANT newVal);

 STDMETHODIMP get_radius(double *pVal);

 STDMETHODIMP put_radius(double newVal);

 STDMETHODIMP get_normal(VARIANT *pVal);

 STDMETHODIMP put_normal(VARIANT newVal);

To Rings.cpp:

STDMETHODIMP CRings::get_rings(short *pVal)

{

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 (Adesk::UInt8&)*pVal = pC->get_rings();

 return S_OK;

}

STDMETHODIMP CRings::put_rings(short newVal)

{

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForWrite);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 pC->put_rings(newVal);

 return S_OK;

}

STDMETHODIMP CRings::get_center(VARIANT *pVal)

{

 try

 {

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 AcAxPoint3d pt = pC->get_center();

 pt.setVariant(*pVal);

 }

 catch(const HRESULT hr)

 {

 Error("An error occurred. Check the input params.");

 return hr;

 19

 }

 return S_OK;

}

STDMETHODIMP CRings::put_center(VARIANT newVal)

{

 try

 {

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForWrite);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 AcAxPoint3d pt(newVal);

 pC->put_center(pt);

 }

 catch(const HRESULT hr)

 {

 Error("An error occurred. Check the input params.");

 return hr;

 }

 return S_OK;

}

STDMETHODIMP CRings::get_radius(double *pVal)

{

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 *pVal = pC->get_radius();

 return S_OK;

}

STDMETHODIMP CRings::put_radius(double newVal)

{

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForWrite);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 pC->put_radius(newVal);

 return S_OK;

}

STDMETHODIMP CRings::get_normal(VARIANT *pVal)

{

 try

 {

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForRead);

 if(pC.openStatus()!=Acad::eOk)

 20

 return E_ACCESSDENIED;

 AcAxPoint3d pt;

 AcGeVector3d v = pC->get_normal();

 pt.set(v.x,v.y,v.z);

 pt.setVariant(*pVal);

 }

 catch(const HRESULT hr)

 {

 Error("An error occurred. Check the input params.");

 return hr;

 }

 return S_OK;

}

STDMETHODIMP CRings::put_normal(VARIANT newVal)

{

 try

 {

 AcAxDocLock lock(m_objId);

 if(lock.lockStatus())

 return E_ACCESSDENIED;

 AcDbObjectPointer<AsdkRings> pC(m_objId,AcDb::kForWrite);

 if(pC.openStatus()!=Acad::eOk)

 return E_ACCESSDENIED;

 AcAxPoint3d pt(newVal);

 pC->put_normal(pt.asVector());

 }

 catch(const HRESULT hr)

 {

 Error("An error occurred. Check the input params.");

 return hr;

 }

 return S_OK;

}

2.9 Additional Project Settings for the Wrapper module

Since we are calling member functions of our custom object, this module will need to link with the import library

of the DBX module which implements the custom object.

As we have both projects in our solution, we can simply set a dependency between the projects. That will ensure

that whenever we modify the custom object project, Visual Studio will compile the DBX project first and link the

generated library into your COM project.

In the Solution Explorer right-click the RingsWrapper project and select Project Dependencies.

On the Dependencies tab check the MyRings item:

 21

Click OK.

2.10 Build and load the COM Wrapper module

Now you are ready to build the project. Go to the main menu -> Build -> Build Solution.

After successfully building the project, open the AutoCAD application and load the DBX module first. Check if

there are any error messages in the Command area.

It is necessary to load the ARX module once manually in order to let it register itself calling

DllRegisterServer(). So, please, load the ARX module. Once the COM server is registered, it is no

longer necessary to load the ARX module manually each time when you want to call it via COM. The runtime

system of COM will make sure that the ARX is loaded. Be careful, however, when your ARX module is loaded

by the COM runtime your On_kInitAppMsg() is not executed.

3 Testing the COM wrapper

If everything goes well, let’s try to create our Rings object using Visual Basic for Applications.

Enter "vbaide" in the AutoCAD command prompt. Visual Basic application is launched by that command.

Now from the Insert pull-down menu select Module. You will be presented with a module section. Set the

cursor in the module window and copy-paste the following macro into it:

Public Sub test()

 'Create a Rings object

 Dim o As Rings

 Set o = ThisDrawing.ModelSpace.AddCustomObject("AsdkRings")

 'Set object's radius, normal, center and number of rings

 o.Radius = 5

 Dim n(0 To 2) As Double

 n(2) = 1

 o.Normal = n

 Dim c(0 To 2) As Double

 o.Center = c

 o.Rings = 4

End Sub

 22

This VBA macro exercises the Rings object.

Before executing this macro, create a reference to the AsdkRingsWrapper. To do that, click the Tools menu

and select the Reference menu item.

You will be presented with the following dialog:

Find the AsdkRingsWrapper library and check it. Click OK.

Now you are ready to run the macro. Run the macro and, hopefully, you will get our Rings object in the AutoCAD

window.

 23

4 Adding OPM feature

This section describes how to implement the Property Inspector API in our COM wrapper, if you checked the

respective checkboxes when you were creating a COM Wrapper in section 2.3.

4.1 Development of OPM properties

If a custom object does not implement a COM object wrapper for itself, the AcAxGetIUnknownOfObject()

function will generate a default wrapper that implements the methods of IAcadEntity or IAcadObject,

depending on if the underlying object can be cast to an AcDbEntity. OPM then uses this object to display the

Color, Layer, Line type, and Line weight properties, also known as the entity common properties.

ICategorizeProperties, IPerPropertyBrowsing, and IOPMPropertyExtension are the

'flavoring' interfaces. For more details about these interfaces refer to the "Property Inspector and Properties Palette

APIs" section in the ObjectARX Developer Guide.

The main purpose of IOPMPropertyExpander interface is to allow one property to be broken out into several

properties in the Property Inspector.

When we created a COM wrapper, checking of the check boxes in the OPM support section created some

additional functions in our implementation class (i.e. Rings.cpp), like this one:

//IOPMPropertyExpander

STDMETHODIMP CRings::GetElementValue(

 /* [in] */ DISPID dispID,

 /* [in] */ DWORD dwCookie,

 /* [out] */ VARIANT * pVarOut)

{

 //TO DO: Implement this function.

 return E_NOTIMPL;

}

In the Rings.h header file you can notice that our CRings class is additionally inherited from

IOPMPropertyExtensionImpl<CRings> and IOPMPropertyExpander.

class ATL_NO_VTABLE CRings :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CRings, &CLSID_Rings>,

 public ISupportErrorInfo,

 public IOPMPropertyExtensionImpl<CRings>,

 public IOPMPropertyExpander,

 ...

There are also a few more COM interfaces in the map:

 BEGIN_COM_MAP(CRings)

 COM_INTERFACE_ENTRY(IRings)

 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(ISupportErrorInfo)

 COM_INTERFACE_ENTRY(IConnectionPointContainer)

 COM_INTERFACE_ENTRY(IOPMPropertyExtension)

 COM_INTERFACE_ENTRY(ICategorizeProperties)

 COM_INTERFACE_ENTRY(IPerPropertyBrowsing)

 COM_INTERFACE_ENTRY(IOPMPropertyExpander)

 COM_INTERFACE_ENTRY(IAcadBaseObject)

 COM_INTERFACE_ENTRY(IAcadBaseObject2)

 COM_INTERFACE_ENTRY(IAcadObject)

 24

 COM_INTERFACE_ENTRY(IAcadEntity)

 COM_INTERFACE_ENTRY(IRetrieveApplication)

 END_COM_MAP()

And there is some other OPM-related code.

In addition, there are prototype declarations for useful functions like GetElementValue(),

SetElementValue(), GetElementStrings(), GetElementGrouping() and GetGroupCount().

These functions are called for each of the variables being processed. The DISPID parameter is passed to each of

these functions, this DISPID is the id of the property. For details about these functions refer to the

IOPMPropertyExpander interface in the ObjectARX help.

FUNCTION NAME PURPOSE

GetGroupCount() Get the number of item in each element

GetElementGrouping() Get the number of elements in the property

GetElementStrings() Get the element string names

GetElementValue() Get the element value

SetElementValue() Set the element value

The following algorithm (in pseudo code) is used to display the point and vertices values in the Property Inspector

(DispId_of_Property is the DISPID for the property, Receive_VertexCount is the variable that

receives the number of vertices from the COM wrapper).

If(SUCCEEDED == GetElementStrings(DispId_of_Property, &opmlpstr, &opmdword))

{

 GetElementGrouping(DispId_of_Property, &grouping);

 // If there is no grouping we just expand the property into opmlpstr.cElems

 // properties, otherwise we create a spinner control with the property name

 //and opmlpstr.cElems properties below it.

 if(0 == grouping)

 {

 count = opmlpstr.cElems;

 }

 else

 {

 addCount = grouping;

 create_spin_control();

 GetGroupCount(DispId_of_Property, &Receive_VertexCount);

 }

 Display_each_element();

}

 25

4.2 Modify the OPM override functions

Modify the code in Rings implementation (Rings.cpp) for these functions as follows:

//IOPMPropertyExpander

STDMETHODIMP CRings::GetElementValue (DISPID dispID,

 DWORD dwCookie, VARIANT *pVarOut)

{

 if (dispID == 2) // Center

 {

 CComVariant var;

 get_center(&var);

 AcAxPoint3d pt(var);

 pVarOut->vt = VT_R8;

 pVarOut->dblVal = pt[dwCookie];

 return S_OK;

 }

 else if (dispID == 4) // Normal

 {

 if (pVarOut == NULL)

 return (E_POINTER) ;

 CComVariant var;

 get_normal(&var);

 AcAxPoint3d pt(var);

 pVarOut->vt = VT_R8;

 pVarOut->dblVal = pt[dwCookie];

 return S_OK;

 }

 return (E_NOTIMPL) ;

}

STDMETHODIMP CRings::SetElementValue (DISPID dispID,

 DWORD dwCookie, VARIANT VarIn)

{

 if (dispID == 2)

 {

 CComVariant var;

 get_center(&var);

 AcAxPoint3d pt(var);

 pt[dwCookie] = VarIn.dblVal;

 pt.setVariant(var);

 put_center(var);

 return S_OK;

 }

 else if (dispID == 4)

 {

 CComVariant var;

 get_normal(&var);

 AcAxPoint3d pt(var);

 pt[dwCookie] = VarIn.dblVal;

 pt.setVariant(var);

 put_normal(var);

 return S_OK;

 }

 return (E_NOTIMPL) ;

}

 26

STDMETHODIMP CRings::GetElementStrings (DISPID dispID,

 OPMLPOLESTR __RPC_FAR *pCaStringsOut,

OPMDWORD __RPC_FAR *pCaCookiesOut)

{

 if (pCaStringsOut == NULL || pCaCookiesOut == NULL)

 return (E_POINTER) ;

 if (dispID == 2)

 {

 pCaStringsOut->cElems = 3;

 pCaStringsOut->pElems = (LPOLESTR*)CoTaskMemAlloc(sizeof(LPOLESTR)*3);

 pCaStringsOut->pElems[0] = SysAllocString(L"Center X");

 pCaStringsOut->pElems[1] = SysAllocString(L"Center Y");

 pCaStringsOut->pElems[2] = SysAllocString(L"Center Z");

 pCaCookiesOut->cElems = 3;

 pCaCookiesOut->pElems = (DWORD*)CoTaskMemAlloc(sizeof(DWORD)*3);

 for (int i=0;i<3;i++)

 pCaCookiesOut->pElems[i] = i;

 return S_OK;

 }

 else if (dispID == 4)

 {

 pCaStringsOut->cElems = 3;

 pCaStringsOut->pElems = (LPOLESTR*)CoTaskMemAlloc(sizeof(LPOLESTR)*3);

 pCaStringsOut->pElems[0] = SysAllocString(L"Normal X");

 pCaStringsOut->pElems[1] = SysAllocString(L"Normal Y");

 pCaStringsOut->pElems[2] = SysAllocString(L"Normal Z");

 pCaCookiesOut->cElems = 3;

 pCaCookiesOut->pElems = (DWORD*)CoTaskMemAlloc(sizeof(DWORD)*3);

 for (int i=0;i<3;i++)

 pCaCookiesOut->pElems[i] = i;

 return S_OK;

 }

 return E_NOTIMPL;

}

STDMETHODIMP CRings::GetElementGrouping (DISPID dispID,

 short *groupingNumber)

{

 if (groupingNumber == NULL)

 return (E_POINTER) ;

 if (dispID == 2 || dispID == 4)

 {

 *groupingNumber = 0;

 return S_OK;

 }

 return E_NOTIMPL;

}

STDMETHODIMP CRings::GetGroupCount (DISPID dispID, long *nGroupCnt)

{

 if (nGroupCnt == NULL)

 return (E_POINTER) ;

 if (dispID == 2 || dispID == 4)

 {

 *nGroupCnt = 3;

 return S_OK;

 }

 return E_NOTIMPL;

}

In Addition, modify the code in Rings.h at the OPM property map section as follows:

 27

// IOPMPropertyExtension

BEGIN_OPMPROP_MAP()

 OPMPROP_ENTRY(0, 0x00000001, PROPCAT_Geometry, 0, 0, 0, "", 0, 1, IID_NULL, IID_NULL, "")

 OPMPROP_ENTRY(0, 0x00000002, PROPCAT_Geometry, 0, 0, 0, "", 0, 1, IID_NULL, IID_NULL, "")

 OPMPROP_ENTRY(0, 0x00000003, PROPCAT_Geometry, 0, 0, 0, "", 0, 1, IID_NULL, IID_NULL, "")

 OPMPROP_ENTRY(0, 0x00000004, PROPCAT_Geometry, 0, 0, 0, "", 0, 1, IID_NULL, IID_NULL, "")

END_OPMPROP_MAP()

That’s all you have to do for supporting the Property Inspector in our Custom Entity.

I hope, now you can see our Custom Entity in AutoCAD and also see and modify it using the Properties window:

Thus, we have shown how COM Wrappers are created.

Good luck in your development!

